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ABSTRACT 

When estimating moderating effects in partial least squares structural equation modeling (PLS-
SEM), researchers can choose from a variety of approaches to model the influence of a moderator 
on a relationship between two constructs by generating different interaction terms. While prior 
research has evaluated the efficacy of these approaches in the context of PLS-SEM, the impact of 
different data treatment options on their performance in the context of standard PLS-SEM and 
consistent PLS-SEM (PLSc-SEM) is as yet unexplored. Our simulation study addresses these 
limitations and explores if the choice of approach and data treatment option has a pronounced 
impact on the methods’ parameter recovery. An empirical application substantiates these findings. 
Based on our results, we offer recommendations for researchers wishing to estimate moderating 
effects by means of PLS-SEM and PLSc-SEM. 

Keywords: Interaction Term, Moderation, Moderator Analysis, Partial Least Squares, Path Modeling, 
PLS-SEM, PLSc-SEM, Structural Equation Modeling, Unstandardized Data 

INTRODUCTION 

Partial least squares structural equation modeling (PLS-SEM; Lohmöller, 1989; Wold, 1982) 
generally estimates linear relationships between the constructs of interest. However, theory may 
suggest that a moderator variable influences the strength, or even the direction of the relationship 
between constructs in the structural model. Figure 1 illustrates a case of a simple path model in 
which the moderator variable (or construct) M is hypothesized to influence the relationship p1 
between constructs Y1 and Y2 (e.g., Baron & Kenny, 1986; Hayes, 2013). 

To model the moderating effect p3, researchers generate an interaction term, which expresses the 
joint influence of the exogenous construct and moderator variable on the endogenous construct. 
In this example, the structural model regression equation would have the following form (Jaccard 
& Turrisi, 2003; Equation 2.3): 

𝑌2 = 𝑐 + 𝑝1 ⋅ 𝑌1 + 𝑝2 ⋅ 𝑀 + 𝑝3 ⋅ (𝑌1 ⋅ 𝑀) + 𝑒.    (1) 
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Figure 1: Simple moderator model (Hair, Hult, Ringle, & Sarstedt, 2017, Chapter 7) 

Here, Y2 represents the endogenous construct, Y1 the exogenous construct, M the moderator 

variable, (Y1·M) the interaction term (that represents the moderating effect p3), and e the error 
term. In Equation 1, p1, p2, and p3 are the structural model parameters, whereas c represents the 
constant. It is important to note that the direct or main effect p1 in the PLS path model becomes 
the simple effect p1 in the moderator model which includes the interaction term (Hair, Hult, 
Ringle, & Sarstedt, 2017, Chapter 7). The estimated equation is still linear in its parameters (i.e., 

p1, p2, and p3), while accounting for the moderating effect utilizing the interaction term (Y1·M). Re-
arranging the equation allows to see the (non-linear) nature of the moderating influence: 

𝑌2 = 𝑐 + ( 𝑝1 + 𝑝3 ⋅ 𝑀) 𝑌1 + 𝑝2 ⋅ 𝑀 + 𝑒.    (2) 

The effect of Y1 on Y2 is estimated as ( 𝑝1 + 𝑝3 ⋅ 𝑀). Thereby the strength of the effect of Y1 
depends on the level of the moderator M. When the moderator is zero, the effect of Y1 on Y2 is p1. 
For each unit increase (decrease) in the moderator the simple effect increases (decreases) by p3. If 
the latent variable scores are standardized (as it is usually the case in PLS-SEM), the moderator 
is zero at its mean and p3 represents an increase (decrease) of the effect of Y1 on Y2 of one standard 
deviation on the moderator. 

Figure 2 shows this example’s structural PLS path model (on how to establish a PLS path model, 
see Chin, 1998; Hair, Hult, Ringle, & Sarstedt, 2017, Chapter 2) 

 

Figure 2: Interaction term in moderation (Hair, Hult, Ringle, & Sarstedt, 2017, Chapter 7) 

To conduct moderator analyses in PLS-SEM, methodological research has produced several 
approaches for generating the interaction term expressed in Equation 1 and shown in Figure 2. 
Henseler and Chin (2010) give an overview of potential methods, which include the product-
indicator approach, the orthogonalizing approach, the hybrid approach, and the two-stage approach. As 
the hybrid approach is not implemented in any PLS-SEM software and since Henseler and Chin's 
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(2010) simulation study results indicate that it does not perform better than any of the available 
alternatives in this research, we focus on the available (e.g., in software applications such as 
SmartPLS) and more frequently used techniques, which include the product-indicator approach, the 
orthogonalizing approach, and the two-stage approach. Besides Henseler and Chin (2010), Henseler 
and Fassott (2010), and Hair, Hult, Ringle, and Sarstedt (2017, Chapter 7) explain and discuss in 
detail these three approaches. 

In their seminal paper, Chin, Marcolin, and Newsted (2003) introduced the product-indicator 
approach to PLS-SEM, demonstrating its usefulness in simulations and in an empirical 
application. This approach involves multiplying each indicator of the exogenous construct with 
each indicator of the moderator variable to generate the interaction term’s product indicators. As 
such, the product-indicator approach requires a reflective measurement of the exogenous 
construct and the moderator variable (for a distinction between formative and reflective 
measurement models in PLS-SEM, for example, see Sarstedt, Hair, Ringle, Thiele, & Gudergan, 
2016; further explications, see the Appendix A). Addressing this limitation, Henseler and Fassott 
(2010) introduced the two-stage approach to generate the interaction term when the exogenous 
construct and/or the moderator variable are measured formatively. Finally, the orthogonalizing 
approach extends the product-indicator approach adapting an idea of Lance's (1988) residual 
centering approach for moderated multiple regressions. It creates an interaction term that is 
uncorrelated with the predictor and moderator and thereby avoids collinearity problems from 
introducing the multiplicative term. 

Henseler and Chin (2010) evaluated and compared the performance of these three approaches 
(and the hybrid approach) in an extensive simulation study with reflectively measured constructs 
by using common factor model data. Their results suggest that, depending on the research 
objective (e.g., parameter recovery, prediction, or statistical power), the two-stage approach or 
the orthogonalizing approach (Little, Bovaird, & Widaman, 2006)—a variant of the product-
indicator approach—should be preferred. Finally, Henseler, Fassott, Dijkstra, and Wilson (2012) 
extended these findings to nonlinear effects between formatively measured constructs in PLS-
SEM. 

While these studies offer valuable insights into the efficacy of different ways to generate the 
interaction term, prior simulations univocally relied on standardized data. This way of treating 
the data seems logical as the PLS-SEM algorithm routinely standardizes the input data prior to 
parameter estimation (for alternative variance-based SEM algorithms such as GSCA, see Hair, 
Hult, Ringle, Sarstedt, & Thiele, 2017; Hwang & Takane, 2004). However, two of the approaches 
frequently used to generate the interaction term—the product-indicator approach and the 
orthogonalizing approach—require a decision on how to calculate the indicator variables’ product 
terms. Possible options involve calculating the product terms based on (1) unstandardized 
indicator data, (2) mean-centered indicator data, and (3) standardized indicator data. Neither of 
the prior studies has paid much attention to the implications of using one of the data treatment 
options compared to the others. Chin et al. (2003) recommend mean-centering to avoid 
collinearity problems. Henseler and Chin (2010) echo this recommendation without 
differentiating between the options in their simulation study. Finally, Henseler and Fassott 
(2010) discuss the scaling of the interaction term and its indicators in terms of collinearity and 
interpretational confounding, but do not compare these data treatments options empirically. 

Addressing this research gap, this study explores the performance of the product-indicator, two-
stage, and orthogonalizing approaches on unstandardized, mean-centered, and standardized 
indicator data. Our simulation study examines both the standard PLS-SEM algorithm, as well as 
Dijkstra’s (2014) and Dijkstra and Henseler’s (2015a, 2015b) consistent PLS-SEM (PLSc-SEM) 
algorithm, when analyzing the different data treatments’ efficacy in modeling the interaction term 
(for PLSc-SEM alternatives and extensions, see Bentler & Huang, 2014; Jung & Park, 2018). As 
a modified version of Wold’s (1982) original PLS-SEM algorithm, the PLSc-SEM method 
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produces model estimates that mimic a common factor model approach to measurement. Our 
analysis therefore extends Dijkstra and Schermelleh-Engel's (2014) study, which demonstrates 
PLSc-SEM’s efficacy regarding estimating nonlinear effects. 

Our results show that the choice of approach to generate the interaction term and data treatment 
has a pronounced impact on the parameter bias that PLS-SEM and PLSc-SEM produce. 
Specifically, we find that the two-stage approach clearly outperforms all the other approaches to 
operationalize the interaction term in terms of parameter recovery, regardless of whether PLS-
SEM or PLSc-SEM is used. The two-stage approach performs very much like the product-
indicator approach with standardized indicator data in a model that only includes reflective 
measurement models. However, the two-stage approach is the superior option in PLS path models 
that include formatively measured constructs. As such, our results suggest the routine application 
of the two-stage approach in PLS-SEM and PLSc-SEM. Thereby, our findings provide the 
guidance that researcher need in their frequent application of PLS-SEM-based moderator 
analyses (Ali, Rasoolimanesh, Sarstedt, Ringle, & Ryu, 2017; Nitzl, 2016; Ringle, Sarstedt, 
Mitchell, & Gudergan, 2018). 

SIMULATION STUDY 

Simulation design and preliminary analyses 

Our simulation study analyzes the parameter recovery accuracy of both the PLS-SEM and PLSc-
SEM algorithms when using the product-indicator, two-stage, and orthogonalizing approaches 
in combination with three data treatment options (i.e., unstandardized, mean-centered, and 
standardized data; see Mooi, Sarstedt, & Mooi-Reci, 2018). Since the technical underpinnings of 
the different approaches for generating the interaction term are well established, we do not 
elaborate on these details, but refer to the relevant literature (e.g., Hair, Hult, Ringle, & Sarstedt, 
2017; Henseler & Chin, 2010; Henseler & Fassott, 2010).  

Our simulation draws on a simple path model with one exogenous construct, one moderator 
construct, and one endogenous construct (Equation 3). In addition, we consider two path models 
with different measurement model operationalizations. In Model 1, three indicators with 
unstandardized unit loadings and standardized loadings of [.70; .80; .90] measure all three 
constructs reflectively (Figure C1 in the Appendix). In Model 2 (Figure C2 in the Appendix), four 
indictors with weights of w1 = [.25; .40; .10; .25,] and w2 = [.20; .35; .20; .25] measure the 
exogenous construct and the moderator construct formatively, whereas three indicators 
reflectively measure the endogenous construct as in Model 1. For Model 1 the data generation 
follows a common factor model approach, while it follows a mixed composite and common factor 
model approach for Model 2 (Rigdon, Sarstedt, & Ringle, 2017; Sarstedt et al., 2016). 

In Model 1, we generated two random normal variables with means of 3 and 4 and unit standard 
deviations for the exogenous and moderator constructs. The endogenous construct’s scores were 
then calculated as follows:  

𝑌2 = 5 + 6 ⋅ 𝑌1 + 3 ⋅ 𝑀 + 3 ⋅ (𝑌1 ⋅ 𝑀) + 𝜀     (3) 

When mean-centering the independent (exogenous) variables, the population values of this 
structural model regression equation become:1 c=71; p1=18; p2=12; p3=3. Setting the variance of 

the error term ε to 99 (the variance of the non-error part is 477)2 yields the following 

                                                           
1 p1=18 (=6*3); p2=12 (=4*3); c = 71 (=18+12+3*3*4+5); 
2 Non-error part: 477 = 18² (=324) + 12² (=144) + 3² (=9); Total variance (Var(Y2)) = 477+99=576; 
Std(Y2)=sqrt(576)=24 
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standardized population values:3 c=0; p1=0.75; p2=0.50; p3=0.125. We added indicator-specific 
random error terms with a mean of zero and variance specified according to the standardized 
indicator loading and construct scores’ variance to generate the observed variable scores.  

In Model 2, we generated data of eight random normal variables (i.e., X1 to X8) with pre-specified 
mean values [4; 2; 4.5; 3; 3; 4; 5; 4] and variances of 1/wi (i.e., the outer model weight). Thus, the 

resulting exogenous constructs have a variance of σ(Y1) = σ(M) = 1, and mean values of μ(Y1) = 

3 and μ(M) = 4. Hence, 

𝑌1 = 0.25 ⋅ 𝑋1 + 0.40 ⋅ 𝑋2 + 0.10 ⋅ 𝑋3 + 0.25 ⋅ 𝑋4      (4) 

𝑀 = 0.20 ⋅ 𝑋5 + 0.35 ⋅ 𝑋6 + 0.20 ⋅ 𝑋7 + 0.25 ⋅ 𝑋8      (5) 

The endogenous construct is generated in the same way as in Model 1 according to Equation 1.  

We generated 1,000 datasets from this population model for both Model 1 and Model 2 with 
sample sizes of 100 and 500. For the data generation  we use the R framework and the MASS 
library (R Core Team, 2014; Venables  & Ripley, 2002). Appendix B documents the data 
generation R code for both conditions while Appendix C illustrates the path models used. 

Tables 1 and 2 show the mean regression estimates across all the samples, using the simulated 
factor scores as input for both models. The regression estimates are very close to the population 
values, supporting the adequacy of our data generation procedure.  

Table 1. Mean regression estimates for Model 1 (sample size: 500) 

 
c 

Mean (SD) 
p1 

Mean (SD) 
p2 

Mean (SD) 
p3 

Mean (SD) 

Unstandardized 
4.96  

(5.790) 
6.03  

(1.850) 
3.00 

(1.394) 
3.00  

(.446) 

Mean-Centered 
71.00  
(1.055) 

18.01  
(.481) 

11.99  
(.472) 

3.00  
(.446) 

Standardized  
.751  

(.021) 
.499  

(.024) 
.124  

(.019) 

             SD = standard deviation 

Table 2. Mean regression estimates for Model 2 (sample size: 500) 

 
c 

Mean (SD) 
p1 

Mean (SD) 
p2 

Mean (SD) 
p3 

Mean (SD) 

Unstandardized 
4.86 

(5.834) 
6.09 

(1.845) 
3.05 

(1.408) 
2.97 
(.446) 

Mean-Centered 
71.00 
(1.090) 

17.99 
(.471) 

11.97 
(.469) 

2.97 
(.446) 

Standardized  
.750 
(.021) 

.499 
(.024) 

.124 
(.019) 

             SD = standard deviation 

 

As the sample size does not influence the implications of our results, we focus our results 
discussion on the sample size of 500. Appendix D shows the additional results of simulations with 
a sample size of 100. 

Next, we applied the PLS-SEM and PLSc-SEM algorithms, using the three data treatment 
options and the product-indicator, two-stage, and orthogonalizing approaches on the artificially 
generated data. In the two-stage approach the product terms are always standardized, because 

                                                           
3 p1=0.75 (=18/24); p2=0.50 (=12/24); p3=0.125 (=3/24) 



Becker, Ringle & Sarstedt, 2018 

© 2018 Journal of Applied Structural Equation Modeling                                                                                    6 

 

the standardized latent variable scores from the first stage are used to generate the interaction 
term for the second stage. Hence, in this approach, varying the interaction term generation is not 
meaningful. For all approaches and in keeping with Henseler & Chin (2010), we applied the 
correction of the interaction term’s variance, thus ensuring that the resulting interaction term 
was unstandardized when computing the final structural model results. We used the software 
SmartPLS 3, which supports the required calculations for the simulated data (Ringle, Wende, & 
Becker, 2015).4 

SIMULATION RESULTS 

Table 3 shows the structural model estimates for Model 1 in terms of different combinations of 
approaches and data treatment options regarding both PLS-SEM and PLSc-SEM. The results 
reveal pronounced differences, depending on the choice of approach to generate the interaction 
term and the data treatment.  

Table 3. Simulation results of Model 1 (sample size: 500) 

Population parameters: p1 = .750; p2 = .500; p3 = .125 

  PLS-SEM PLSc-SEM     PLS-SEM PLSc-SEM 

  Mean SD Mean SD     Mean SD Mean SD 

Product-indicator (Mean-Centered)   Orthogonalizing (Mean-Centered) 

p1  .641 .024 .749 .030   p1  .643 .024 .751 .031 

p2 .427 .028 .498 .035   p2 .428 .028 .499 .035 

p3 .064 .021 .065 .023   p3 .067 .017 .070 .017 

                      
Product-indicator (Unstandardized)   Orthogonalizing (Unstandardized) 

p1  .418 .105 -.128 .067   p1  .643 .024 .751 .031 

p2 .259 .079 -.158 .055   p2 .428 .028 .499 .035 

p3 .045 .020 .138 .012   p3 .067 .017 .070 .017 

                      
Product-indicator (Standardized)   Orthogonalizing (Standardized) 

p1  .641 .024 .748 .031   p1  .643 .024 .751 .031 

p2 .427 .028 .498 .035   p2 .428 .028 .499 .035 

p3 .100 .033 .124 .042   p3 .105 .026 .133 .033 

                      
Two-Stage (*)   Main Effects Only 

p1  .643 .024 .751 .031   p1  .643 .024 .751 .031 

p2 .428 .028 .500 .035   p2 .428 .028 .499 .035 

p3 .098 .028 .124 .038             

SD = standard deviation 

 

Using unstandardized data as input for the product-indicator approach produces considerable 
biases in both PLS-SEM and PLSc-SEM. PLSc-SEM clearly underestimates the effects of the 
exogenous and moderator constructs, yielding model estimates of -.128 and -.158, which are far 
from the pre-specified values of .75 and .50. Conversely, with an estimate of .138, the approach 

                                                           
4 Technically, we used a single dataset in SmartPLS, which included an indicator for the different factor level 
combinations. We used this indicator as a grouping variable and, then, ran the PLS-SEM analyses for each group 
representing a specific factor level combination. The SmartPLS results report included the outcomes for each group-
specific model estimation. 
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slightly overestimates the interaction term’s pre-specified effect (.125). Similarly, PLS-SEM 
underestimates the structural model parameters, particularly the interaction effect.  

On the contrary, estimating the model with PLSc-SEM by means of the product-indicator 
approach and standardized data, produces estimates with practically no bias and low standard 
deviations. These results support PLSc-SEM’s adequacy to estimate models using common factor 
model data (Dijkstra & Henseler, 2015a, 2015b; Sarstedt et al., 2016) and is consistent with the 
results by Dijkstra and Schermelleh-Engel (2014). The standard PLS-SEM algorithm, however, 
underestimates all structural model parameters, while producing lower standard deviations, a 
behavior well documented in prior literature (e.g., Goodhue, Lewis, & Thompson, 2012; Henseler 
et al., 2014; Reinartz, Haenlein, & Henseler, 2009).  

Applying PLS-SEM and PLSc-SEM, using the product-indicator approach and mean-centered 
data yields results like those of the standardized data option for the simple effects p1 and p2. 
However, both approaches show a pronounced tendency to underestimate the interaction effect 
p3, rendering this data treatment option inadequate in terms of parameter recovery. 

The results of the orthogonalizing approach correspond largely to those of the product-indicator 
approach across all data treatment options. The exception is, however, that the results of the 
unstandardized data option parallel those of the mean-centered option for both PLS-SEM and 
PLSc-SEM. In addition, the interaction effect p3 is slightly overestimated for the PLSc-SEM 
method on standardized data. This overestimation is even more pronounced for a sample size of 
100 (Appendix D). This overestimation, combined with PLS-SEM’s underestimation of the 
relationships between common factors in the structural model, yields a parameter estimate closer 
to the expected population value when using PLS-SEM and the orthogonalizing approach on 
standardized indicator data. This could be a potential reason why Henseler and Chin (2010) 
conclude that the orthogonalizing approach is particularly advantageous for precise parameter 
recovery. In their simulation study, they only investigate the different approaches for PLS-SEM 
on standardized data. However, the analysis of the PLSc-SEM results reveals that the 
orthogonalizing approach tends to overestimate the interaction term’s coefficient. 

Finally, the two-stage approach’s performance parallels that of the product-indicator approach 
with standardized data. PLSc-SEM produces almost no bias, while PLS-SEM tends to slightly 
underestimate the structural model parameters. The underestimation of PLS-SEM is expected as 
we are using purely reflective (common factor model) data. As PLS-SEM is a method of 
composites, it shows its known structural model parameter attenuation for common factor model 
data. 

For Model 2, comprising reflectively and formatively measured constructs, we expect the 
standard PLS-SEM results to be closer to the population parameters, as attenuation should occur 
to a smaller degree in this model (Becker, Rai, & Rigdon, 2013). However, since part of our 
model’s data generation follows a common factor model rather than a composite model (Hair et 
al., 2017; Sarstedt et al., 2016), structural model estimates between composites and common 
factors (i.e., the reflectively measured endogenous construct) should still be downward biased, 
but to a lesser degree than in a purely reflective model (i.e., Model 1).  

The results in Table 4 confirm these expectations. The PLS-SEM results mirror those of Model 
1 across all the data treatment and approach combinations, albeit with smaller biases in most 
cases. An exception is the use of the product-indicator approach with unstandardized data or 
mean-centered data, for which PLS-SEM produces considerably higher (downward) biases for 
the interaction effect p3 than in Model 1. The same holds for PLSc-SEM, which generally 
performs weaker regarding recovering the interaction term’s parameter across practically all 
combinations of approaches for generating the interaction term and data treatment options. 
Again, the two-stage approach excels in both PLS-SEM and PLSc-SEM. Interestingly, in this 
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model with formative and reflective measures, the orthogonalizing approach overestimates the 
interaction term p3 for both PLS-SEM and PLSc-SEM on standardized indicator data. This 
reconfirms the problematic overestimation tendency of the orthogonalizing approach observed 
for PLSc-SEM in Model 1.  

 

Table 4. Simulation results of Model 2 (sample size: 500) 

Population parameters: p1 = .750; p2 = .500; p3 = .125 

  PLS-SEM PLSc-SEM     PLS-SEM PLSc-SEM 

  Mean SD Mean SD     Mean SD Mean SD 

Product-indicator (Mean-Centered)   Orthogonalizing (Mean-Centered) 

p1  .680 .022 .735 .024   p1  .690 .022 .746 .024 

p2 .449 .027 .486 .030   p2 .456 .028 .493 .030 

p3 .020 .009 .022 .010   p3 .033 .006 .036 .007 

                      
Product-indicator (Unstandardized)   Orthogonalizing (Unstandardized) 

p1  .529 .055 .571 .059   p1  .690 .022 .746 .024 

p2 .328 .050 .354 .054   p2 .456 .028 .493 .030 

p3 .019 .006 .021 .007   p3 .033 .006 .036 .007 

                      
Product-indicator (Standardized)   Orthogonalizing (Standardized) 

p1  .679 .022 .734 .024   p1  .690 .022 .746 .024 

p2 .449 .027 .485 .030   p2 .456 .028 .493 .030 

p3 .096 .040 .103 .043   p3 .146 .022 .158 .024 

                      
Two-Stage (*)   Main Effects Only 

p1  .690 .022 .746 .024   p1  .690 .022 .746 .024 

p2 .456 .027 .493 .030   p2 .456 .028 .493 .030 

p3 .112 .025 .121 .027             
SD = standard deviation 

EMPIRICAL EXAMPLE 

To illustrate the different approaches for generating the interaction term and data treatment, we 
draw on the simple corporate reputation model used in Hair et al. (2017; 2018). The goal of this 
model is to explain the effects of competence (COMP) and likeability (LIKE), representing the 
two dimensions of corporate reputation (Schwaiger, 2004), on customer satisfaction (CUSA) and 
ultimately customer loyalty (CUSL). Drawing on Hair et al. (2017), we consider customers’ 
perceived switching costs (SWITCH) as a moderator variable that can be assumed to negatively 
influence the relationship between satisfaction and loyalty. The interaction term 
CUSA * SWITCH establishes the negative effect of the SWITCH moderator variable on the path 
from CUSA to CUSL. Figure 1 shows the path model, which, in a similar form, has frequently 
been used to illustrate the PLS-SEM methods and its extensions (Henseler, Ringle, & Sarstedt, 
2016; Matthews, Sarstedt, Hair, & Ringle, 2016; Sarstedt, Ringle, & Hair, 2017).  
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Figure 3. Corporate reputation path model 

The measurement models of COMP, LIKE, and CUSL draw on three reflective items each, 
whereas SWITCH is measured with four reflective items. Finally, a single item (i.e., overall 
satisfaction) represents CUSA. The model estimation draws on data from two major German 
mobile communications network providers and two smaller competitors. A total of 344 customers 
rated each item on a seven-point Likert scale. We used the software SmartPLS 3 (Ringle et al., 
2015) to create and estimate the model. We use bootstrapping with 5,000 samples and the no sign 
changes option to test for the coefficients’ significance. We find that the measurement models 
meet all the relevant evaluation criteria. 

Comparing the results of the empirical example in Table 5 with those of the simulation study 
(Table 3) reveals a consistent pattern. The product-indicator approach with standardized data 
and the two-stage approach produce highly similar results. We find that both methods have a 
significant (p < .05) negative moderating effect, which is slightly more pronounced in PLSc-SEM. 
Conversely, using the orthogonalizing approach with standardized data suggests a considerably 
stronger moderating effect, which, however, is not significant (p > .10). As in the simulation 
study, using the product-indicator approach with unstandardized data produces highly divergent 
results. Finally, mean-centering seems to deflate the parameter estimates, rendering the 
interaction effect nonsignificant (p > .10) when using the orthogonalizing approach.  

Jointly, these results illustrate that the choice of approach to generate the interaction term and 
the data treatment option matter. Depending on the modus operandi, researchers should expect 
different results and even changes in significance. The latter is not surprising, given that 
moderating effects are usually small. For example, Aguinis et al.’s (2005) review of all studies 
published from 1969 to 1998 in the Journal of Applied Psychology, Personnel Psychology, and Academy 
of Management Journal reports a mean moderating effect size of .017 in latent variable models. In 
light of such a marginal mean effect size, which does not even correspond to a small effect (Cohen, 
1988), the choice of approach to generate the interaction term and the data treatment option can 
produce divergent findings—as in our empirical example. 

DISCUSSION AND CONCLUSION 

When estimating moderating effects using PLS-SEM and PLSc-SEM, researchers can choose 
from a variety of approaches to model the moderator’s influence on the relationship between two 
constructs. While Henseler and Chin (2010) evaluated the efficacy of these approaches in the 
context of PLS-SEM, prior research did not explore the impact of different data treatment options 
on their performance. Furthermore, prior methodological research on moderating effects focused 
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on PLS-SEM, neglecting the PLSc-SEM algorithm proposed by Dijkstra (2014) and Dijkstra and 
Henseler (2015a, 2015b). Addressing these limitations, we report the results of a simulation study 
that not only allows us to draw conclusions on each approach’s suitability regarding generating 
the interaction term in PLS-SEM and PLSc-SEM (i.e., product-indicator, two-stage, 
orthogonalizing), but also assesses how the data treatment influences these approaches’ 
performance.  

Table 5. Results of the empirical example 
  PLS-SEM PLSc-SEM     PLS-SEM PLSc-SEM  
        
Product-indicator (Mean-Centered)   Orthogonalizing (Mean-Centered)  

COMPCUSA .162*** .076   COMPCUSA .162** .077  

LIKECUSA .424*** .519***  LIKECUSA .424*** .519***  

LIKECUSL .318*** .522***  LIKECUSL .305*** .495***  

COMPCUSL -.016 -.114  COMPCUSL 0 -.090  

CUSACUSL .465*** .457***  CUSACUSL .497*** .496***  

SWITCHCUSL .068 .022  SWITCHCUSL .070 .026  

CUSA * SWITCH CUSL 
(Interaction Term) 

-.053** -.058**  
CUSA * SWITCH CUSL 
(Interaction Term) 

-.071 -.068 
 

               
Product-indicator (Unstandardized)   Orthogonalizing (Unstandardized)  

COMPCUSA .162*** .076   COMPCUSA .162** .076  

LIKECUSA .424*** .519***   LIKECUSA .424*** .519***  

LIKECUSL .318*** .550***  LIKECUSL .305*** .495***  

COMPCUSL -.017 -.091   COMPCUSL 0 -.090  

CUSACUSL .700*** .389***   CUSACUSL .497*** .496***  

SWITCHCUSL .394*** -.205*  SWITCHCUSL .070 .026  

CUSA * SWITCH CUSL 
(Interaction Term) 

-.052** .026  
CUSA * SWITCH CUSL 
(Interaction Term) 

-.071* -.068 
 

        
Product-indicator (Standardized)   Orthogonalizing (Standardized)  

COMPCUSA .162** .076   COMPCUSA .162** .076  

LIKECUSA .424*** .519***   LIKECUSA .424*** .519***  

LIKECUSL .319*** .523***  LIKECUSL .305*** .494***  

COMPCUSL -.016 -.112   COMPCUSL 0 -.085  

CUSACUSL .465*** .454***   CUSACUSL .497*** .496***  

SWITCHCUSL .068 .020  SWITCHCUSL .069 .023  

CUSA * SWITCH CUSL 
(Interaction Term) 

-.076** -.090**  
CUSA * SWITCH CUSL 
(Interaction Term) 

-.106 -.112 
 

        
Two-Stage   Main Effects Only  

COMPCUSA .162** .076   COMPCUSA .162** .076  

LIKECUSA .424*** .519***   LIKECUSA .424*** .519***  

LIKECUSL .319*** .523***  LIKECUSL .314*** .511***  

COMPCUSL -.017 -.115   COMPCUSL -.028 -.142  

CUSACUSL .467*** .456***   CUSACUSL .498*** .497***  

SWITCHCUSL .069   SWITCHCUSL .082 .057  

CUSA * SWITCH CUSL 
(Interaction Term) 

-.071** -.084**     
 

        

     Notes: * p<.10, ** p < .05, *** p < .01. 

The results of our simulation study show that the combination of approaches for generating the 
interaction term and data treatment options has a pronounced effect on the parameter estimates. 
Specifically, our simulation results show that the two-stage approach, which, by design, draws on 
standardized product terms, outperforms the other approaches in terms of parameter recovery. 
This performance generalizes to both PLS-SEM and PLSc-SEM, as well as models comprising 
reflectively and formatively measured constructs.  
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We also find that using unstandardized data should be avoided when generating the interaction 
term, as both PLS-SEM and PLSc-SEM’s performance is confusing, particularly when using the 
product-indicator approach. Our results also advise against the use of mean-centering before 
creating the interaction term. This finding is striking, given that several researchers, such as 
Henseler and Chin (2010, p. 729), call this option to be used, concluding that “centering is 
advantageous for metric independent and moderator variables.” While prior research has 
questioned mean-centering’s efficacy regarding alleviating multicollinearity problems 
(Echambadi & Hess, 2007), our results suggest that this approach can trigger considerable biases 
in the estimation of the interaction effect when using PLS-SEM and PLSc-SEM.  

Our findings are partly contrary to those of Henseler and Chin (2010) who found that the 
product-indicator approach and the orthogonalizing approach excel in terms of parameter 
recovery. A potential explanation for this divergence could be that, with standardized product 
terms of indicators, the orthogonalizing approach compensates the PLS-SEM’s tendency to 
underestimate structural model parameters in common factor models by overestimating the 
interaction effect. In Model 1, the coefficient of the interaction term is closer to the true 
population value for the orthogonalizing approach compared to the other approaches. Yet, with 
respect to PLSc-SEM estimates and the second simulation model, we can see that this effect seems 
to be overestimated. Regarding, the product-indicator approach we particularly observe that it 
underperforms in models containing formatively specified constructs for the moderator and/or 
predictor construct (i.e., Model 2) whereas it is almost equivalent to the two-stage approach in 
purely reflective models (i.e., Model 1). 

While our study offers important guidance regarding estimating moderating effects in PLS-SEM 
and PLSc-SEM, it has limitations that open opportunities for future research. First, the choice of 
design factors and factor levels limits the generalizability of any simulation study. We focused 
our simulation to a reduced set of factor combinations. Specifically, we used two different sample 
sizes of 100 and 500, one set of loadings, weights, and structural model coefficients. Future 
research could use a broader range of factor levels to assess the generalizability of our findings. 
However, our major concern was to show the influence of unstandardized data on the different 
approaches and to highlight the differences between the approaches. We do not expect the main 
findings to change much with the inclusion of additional factor level combinations. 

Second, the advantageous two-stage approach is subject to collinearity. Even though collinearity 
between latent variables does not seem to be a critical issue in PLS-SEM applications, future 
research should attend to this potential problem and aim at developing the orthogonalizing two-
stage approach. However, there are also criticism of such approaches, especially in the regression 
literature. For example, Echambadi, Arroniz, Reinartz, and Lee (2006) criticize the residual-
centering approach by Lance (1988) in that it does not actually alleviate multicollinearity 
problems but distorts the interpretation of effects. Using a residual-centering or orthogonalizing 
approach, the p1 and p2 in Equation 1 cannot be interpreted as conditional (or simple) effects 
anymore as it is typically done in a moderation model (i.e., rearrangement to Equation 2 would 
not be possible). Instead they are very similar to the main effects from a model without interaction 
term. While this is sometimes stated as a benefit in the literature (e.g., Hair et al., 2017, Chapter 
7; Henseler & Fassott, 2010), it can complicate the interpretation of effects or even render the 
effects invalid (Echambadi et al., 2006). Beyond these criticisms in the regression literature, the 
literature on covariance-based SEM has proposed further advancements of the orthogonalizing 
approach to product-indicators such as the double mean-centering approach (Lin, Wen, Marsh, 
& Lin, 2010) that future research should consider in a PLS-SEM context. 

Third, we used a simulation model containing only reflective (common factor) constructs (Model 
1) and one model containing both formative and reflective (composite and common factor) 
constructs, where the exogenous constructs are formative and the endogenous construct is 
reflective (Model 2). However, we did not use a model containing only formative measures or a 
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mixed model that has formatively measured constructs in an endogenous position. The simple 
reason is a lack of available simulation procedures for composite model data that contains 
moderating effects. Future research should develop such an approach and test the performance of 
PLS-SEM on correctly specified composite population models that contain moderating effects. 

Fourth, we did not assess the approaches’ statistical power. Prior research found that the two-
stage approach yields more power than the product-indicator and orthogonalizing approaches 
(Henseler & Chin, 2010; Henseler et al., 2012). Given that the two-stage approach produced lower 
standard deviations in our simulation than most of the other approaches (Tables 3 and 4), we 
assume that its advantage in terms of statistical power remains unchanged, making it the 
preferred option. However, future research should substantiate this assumption. Similarly, future 
research should investigate the approaches and data treatment options from an out-of-sample 
prediction perspective (Shmueli, Ray, Velasquez Estrada, & Chatla, 2016). In doing so, it would 
be particularly interesting to investigate the impact of different weighting schemes in the context 
of our research question. By default, the estimation of reflectively specified constructs draws on 
Mode A, whereas PLS-SEM uses Mode B for formatively specified constructs. However, Becker 
et al. (2013) show that this reflex-like use of Mode A and Mode B is not optimal in terms of out-
of-sample prediction under all conditions.  

Fifths, future research should investigate how unstandardized PLS-SEM estimates can correctly 
be derived and utilized when estimating moderating effects. The procedure to unstandardize 
latent variable scores in the importance-performance matrix analysis (e.g., Hair, Hult, Ringle, & 
Sarstedt, 2017; Ringle & Sarstedt, 2016) could be a promising way to pursue this task. Finally, 
analyzing the efficacy of different interaction term generation and data treatment options may 
represent a fruitful avenue of future research when considering moderating effects and the use of 
alternative variance-based SEM algorithms (e.g., GSCA; Hwang, 2009). 

Sixth, the PLSc-SEM approach requires additional explorations. The method builds on the PLS-

SEM outcomes and uses the composite reliability ρA to adjust the estimated path coefficients to 
mimic common factor results. Further research should address how the indicators’ error term 

correlations5 affect the ρA computation and, thus, the PLSc-SEM results in general and in the 
context of moderator analyses.  
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APPENDIX A – TERMINOLOGY 

Prior literature on PLS-SEM, also with regards to interactions terms in the moderator analysis 
(e.g., Henseler & Fassott, 2010), refers to reflective and formatively measured constructs. This 
terminology has been further clarified by Sarstedt et al. (2016). Theoretically established latent 
variables build on operational definitions to establish their reflective or formative 
conceptualization. Covariance-based SEM uses common factors as proxies of reflective 
constructs, whereas PLS-SEM estimates composites which serve as proxies of reflectively and 
formatively established constructs. PLSc-SEM uses the composites obtained by PLS-SEM to 
mimic common factors as proxies of reflectively established constructs.  

PLS-SEM traditionally allows to choose between two different ways of estimating the composite 
weights: correlation weights (Mode A) and regression weights (Mode B). According to Becker et 
al. (2013), correlation weights (Mode A) estimations in PLS-SEM circumvent collinearity issues 
and perform particularly well with decent sample sizes. Composites obtained by regressions 
weights (Mode B) perform better when sample sizes are very large and the model exhibits high 
R² levels.  

In line with these explications, this research uses correlation weights (Mode A) to obtain 
composites as proxies of reflectively conceptualized constructs. Thereby, we bypass potential 
collinearity problems. These collinearity problems occur by design as reflective indicators are 
assumed to correlate highly. In contrast, both correlation weights (Mode A) and regression 
weights (Mode B) are suitable candidates to obtaining proxies of formatively conceptualized 
constructs. Here, we follow the traditional approach in PLS-SEM and use regression weights 
(Mode B) to estimate composites that become proxies of formatively established constructs (Chin, 
1998; Hair, Hult, Ringle, & Sarstedt, 2017; Henseler, Ringle, & Sinkovics, 2009). This decision is 
justified as our simulation does not introduce collinearity between the indicators of formative 
measurement models. In addition, our simulations utilize relatively large sample sizes (100 and 
500).  

The question may arise whether the interaction term is a common factor (reflective) or a 
composite (formative).6 Conceptually, it’s none of both but an artificial modeling element to 
express the moderating effect. The focal constructs in our models are Y1, Y2, and M. All of these 
are assumed to have theoretical importance and we try to estimate effects between these 
theoretical entities. Yet, the theoretical test space does not contain any interaction constructs. It 
is simply a statistical vehicle to estimate the proposed effects. Hence, the question whether an 
interaction term is common factor (reflective) or a composite (formative) is not relevant. 
Consequently, researchers do not assess the interaction terms and its measurement model based 
on the conventional evaluation criteria (Hair et al. 2017, Chapter 7). Statistically, however, the 
interaction term for the product -indicator approach and the orthogonalizing approach is a 
composite as PLS-SEM is a method that uses composites to represent constructs in the path 
model and to estimate their (structural) model relations. Therefore, the researcher also has to 
specify whether to use correlation weights (Mode A) or regression weights (Mode B) to estimate 
the indicator weights for the product-indicators or residual-indicators. We follow prior literature 
(i.e., Chin et al., 2003; Henseler & Chin, 2010) and use Mode A. For the two-stage approach it 
might be debatable whether to name the interaction term construct scores a composite as a single 
indicator variable is used so that constructs scores and indicator are equal. 

  

                                                           
6 We like to thank an anonymous reviewer for raising this question.  
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APPENDIX B – DATA GENERATION R CODE 

R Code (Model 1) 
 

library(MASS) 

iterations <- 1000 

 

correlation.matrix <- diag(12)  

sample.size <- 500  

mean.vector <- c(3,4,rep(0,10)) 

loading <- c(0.7, 0.8, 0.9) 

loadings2 <- (1-loading^2)/loading^2 

 

Lambda <- matrix(0, ncol=3, nrow=9) 

Lambda[1:3,1]<-1 

Lambda[4:6,2]<-1 

Lambda[7:9,3]<-1 

 

bi <- matrix(0,iterations,4) 

bim <-matrix(0,iterations,4) 

bis <- matrix(0,iterations,3) 

 

for(i in 1:iterations) { 

sim.data <- data.frame(mvrnorm(sample.size, mean.vector, 

correlation.matrix, empirical=FALSE)) 

 

A <- sim.data[,1] 

B <- sim.data[,2] 

E <- sim.data[,3] 

 

F2 <- 5 + 6*A + 3*B + 3*A*B + sqrt(99)*E   

# Note: mean-centered = 18*A + 12*B + 3*A*B 

# Note: standardized = 0.75*A + 0.50*B +0.125*A*B 

 

bi[i,] <- coef(lm(F2~A+B+A*B)) 

bim[i,] <- coef(lm(F2~scale(A,scale=FALSE) + scale(B,scale=FALSE) + 

scale(A,scale=FALSE)*scale(B,scale=FALSE))) 

bis[i,] <- coef(lm(scale(F2)~0 + scale(A) + scale(B) + 

scale(A)*scale(B))) 

   

varmatrix2 <- diag(c(rep(var(A),3), rep(var(B),3), rep(var(F2),3))) 

 

dat <- cbind(A,B,F2)  %*% t(Lambda) + as.matrix(sim.data[,4:12]) %*% 

(sqrt(loadings2 * varmatrix2)) 

  

write.table(dat, "Simulation_Interaction.csv", sep=";", append=TRUE, 

row.names=FALSE, col.names=FALSE) 

} 

 

round(colMeans(bi),3) # Normal Interaction Model 

round(colMeans(bim),3) # Mean-Centered Interaction Model 

round(colMeans(bis),3) # Standardized Interaction Model 

round(apply(bi,2,sd),3) 

round(apply(bim,2,sd),3) 

round(apply(bis,2,sd),3) 
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R Code (Model 2) 

library(MASS) 

iterations <- 1000 

 

d <- c(0.25,0.4,0.1,0.25,0.2,0.35,0.2,0.25,1,1,1,1) 

d <- 1/d 

correlation.matrix <- diag(d)   

sample.size <- 500  

mean.vector <- c(4,2,4.5,3,3,4,5,4,rep(0,4)) 

loading <- c(0.7, 0.8, 0.9) 

loadings2 <- (1-loading^2)/loading^2 

 

bi <- matrix(0,iterations,4) 

bim <-matrix(0,iterations,4) 

bis <- matrix(0,iterations,3) 

 

for(i in 1:iterations) { 

sim.data <- data.frame(mvrnorm(sample.size, mean.vector, 

correlation.matrix, empirical=FALSE)) 

 

A <- 0.25*sim.data[,1] + 0.4*sim.data[,2] + 0.1*sim.data[,3] + 

0.25*sim.data[,4] 

B <- 0.2*sim.data[,5] + 0.35*sim.data[,6] + 0.2*sim.data[,7] + 

0.25*sim.data[,8] 

E <- sim.data[,9] 

 

F2 <- 5 + 6*A + 3*B + 3*A*B + sqrt(100)*E   

# mean-centered = 18*A + 12*B + 6*A*B 

# standardized = 0.75*A + 0.50*B +0.125*A*B 

 

bi[i,] <- coef(lm(F2~A+B+A*B)) 

bim[i,] <- coef(lm(F2~scale(A,scale=FALSE) + scale(B,scale=FALSE) + 

scale(A,scale=FALSE)*scale(B,scale=FALSE))) 

bis[i,] <- coef(lm(scale(F2)~0 + scale(A) + scale(B) + 

scale(A)*scale(B))) 

   

varmatrix2 <- diag(rep(var(F2),3)) 

 

dat <- cbind(sim.data[,1:8],(F2  %*% t(rep(1,3)) + 

as.matrix(sim.data[,10:12]) %*% (sqrt(loadings2 * varmatrix2)))) 

 

write.table(dat, "Simulation_Interaction_Form.csv", sep=";", 

append=TRUE, row.names=FALSE, col.names=FALSE) 

} 

 

round(colMeans(bi),3) # Normal Interaction Model 

round(colMeans(bim),3) # Mean-Centered Interaction Model 

round(colMeans(bis),3) # Standardized Interaction Model 

round(apply(bi,2,sd),3) 

round(apply(bim,2,sd),3) 

round(apply(bis,2,sd),3) 
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APPENDIX C – ILLUSTRATIONS OF SIMULATION PATH MODELS 

 

 

Figure C1. Model 1 (all constructs are reflective) 

 

 

 

Figure C2. Model 2  
(exogenous construct and moderator are formative, endogenous construct is reflective) 
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APPENDIX D – ADDITIONAL SIMULATION RESULTS FOR SAMPLE SIZE OF 100 

Table B1. Mean regression estimates for Model 1 (sample size: 100) 

 
α 

Mean (Sd) 
β1 

Mean (Sd) 
β2 

Mean (Sd) 
β3 

Mean (Sd) 

Unstandardized 
4.72 

(14.139) 
6.07 

(4.523) 
3.05 

(3.390) 
2.99 

(1.080) 

Mean-Centered 
71.08 
(2.412) 

18.04 
(1.071) 

12.03   
(1.039) 

2.99  
(1.080) 

Standardized  
.750  

(.050) 
.499  

(.053) 
.122  

(.044) 

               SD = standard deviation 

 

Table B2. Mean regression estimates for Model 2 (sample size: 100) 

 
α 

Mean (Sd) 
β1 

Mean (Sd) 
β2 

Mean (Sd) 
β3 

Mean (Sd) 

Unstandardized 
4.48 

(13.710) 
6.13 

(4.311) 
3.14 

(3.401) 
2.96 

( 1.070) 

Mean-Centered 
71.03 
(2.420) 

17.98 
(1.104) 

12.04 
(1.028) 

2.96 
(1.070) 

Standardized  
.749 
(.050) 

.502 
(.052) 

.122 
(.044) 

              SD = standard deviation 

 

Table B3. Simulation results of Model 1 (sample size: 100) 

Population parameters: p1 = .750; p2 = .500; p3 = .125 

  PLS-SEM PLSc-SEM     PLS-SEM PLSc-SEM 
  Mean SD Mean SD     Mean SD Mean SD 
Product-indicator (Mean-Centered)   Orthogonalizing (Mean-Centered) 

p1  .635 .054 .744 .070   p1  .644 .053 .750 .068 
p2 .421 .062 .488 .080   p2 .425 .063 .491 .079 
p3 .063 .059 .064 .060   p3 .081 .062 .087 .068 
                      
Product-indicator (Unstandardized)   Orthogonalizing (Unstandardized) 

p1  .439 .254 -.264 3.088   p1  .644 .053 .750 .068 
p2 .271 .200 -.288 3.043   p2 .425 .063 .491 .079 
p3 .041 .051 .168 .614   p3 .081 .062 .087 .068 
                      
Product-indicator (Standardized)   Orthogonalizing (Standardized) 

p1  .636 .054 .743 .072   p1  .644 .053 .750 .068 
p2 .421 .062 .488 .081   p2 .425 .063 .491 .079 
p3 .097 .089 .117 .108   p3 .121 .093 .156 .124 
                      
Two-Stage (*)   Main Effects Only 

p1  .644 .054 .753 .071   p1  .644 .053 .750 .068 
p2 .426 .062 .494 .081   p2 .425 .063 .491 .079 
p3 .097 .070 .125 .097             
                      

SD = standard deviation 
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Table B4. Simulation results of Model 2 (sample size: 100) 

Population parameters: p1 = .750; p2 = .500; p3 = .125 

  PLS-SEM PLSc-SEM     PLS-SEM PLSc-SEM 
  Mean SD Mean SD     Mean SD Mean SD 
Product-indicator (Mean-Centered)   Orthogonalizing (Mean-Centered) 

p1  .645 .052 .698 .056   p1  .676 .051 .732 .056 
p2 .426 .061 .461 .066   p2 .447 .061 .484 .066 
p3 .021 .025 .023 .027   p3 .048 .021 .052 .022 
                      
Product-indicator (Unstandardized)   Orthogonalizing (Unstandardized) 

p1  .470 .130 .508 .141   p1  .676 .051 .732 .056 
p2 .287 .116 .310 .125   p2 .447 .061 .484 .066 
p3 .025 .015 .027 .017   p3 .048 .021 .052 .022 
                      
Product-indicator (Standardized)   Orthogonalizing (Standardized) 

p1  .643 .052 .695 .057   p1  .676 .051 .732 .056 
p2 .425 .060 .459 .066   p2 .447 .061 .484 .066 
p3 .095 .113 .103 .122   p3 .216 .087 .234 .094 
                      
Two-Stage (*)   Main Effects Only 

p1  .676 .052 .731 .057   p1  .676 .051 .731 .056 
p2 .447 .061 .483 .066   p2 .448 .061 .484 .066 
p3 .101 .057 .109 .062             
                      

SD = standard deviation 

 
 


